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1. Introduclioh

Scveral times in science and engincering we need to cvaluate rather cxotic functions -- clliptic
intcgrals, Bessel functions. and probability density functions, for example. Here's where you can get
your hands on some LISP code that will evaluate some of these functions. The code runs in both
MACLISP and LISPM LISP.

‘The functions in the library arc scattered in scveral different files. “T'he descriptions below will
describe the function name, how it should be used, and the file where that function can be obtained. For
example, the function FACTOR is in PS:<GLR.FUNCI>MOD.LSP. Before it can be used, the code
must first be loaded by doing one of

(LOAD “PS:<GLR. FUNCT>MOD. FASL") ; For MACLISP

(LOAD "0Z:PS:<GLR.FUNCT>MOD.QFASL") : For MIT LISPM
(LOAD "0Z:PS:<GLR.FUNCT>MOO.QBIN") : For Symbolics LM2
(LOAD "0Z:PS:<GLR.FUNCT>MOD.BIN") : For Symbolics 3600

Afier the file has been loaded, just call the function with the right arguments:
(FACTOR 12345678987654321) ==> (3 3 3 3 37 87 333667 333867)

[f you have to compile one of the iibrary files or you want to rcad the source version of a library
file into your LISP, then you will have to load a special macro called IMPORT-FILE that is defined in
the file PS:<{GI.R.LISP>IMPORT.I.SP. You may want to usc the IMPORT-FILE macre yoursclf, Its
format is:

(IMPORT-FILE "OZ:PS:<GLR.FUNCT>MOD.LSP")

The argument is the source filename with a LISPM style hostaame {the MACLISP version of the macro
knows to ignore the host). The bchavior of the macro depends on whether it is being compiled,
cvaluated, of loaded. 1f the IMPORT-FILE form is evaluated or loaded (EVAL-WHEN (EVAL LLOAD)
...) and the imported file has not already been loaded, it will Joad a binary file if it can find one or the
source filc if it cannot. At compile time (EVAL-WHEN (COMPILE) ...), the IMPORT-FILE form turns
into

(PROGN "COMPILE <first form ia source file» <load code>)

By convention, the first form in the imported source file should be a DECLARE of all the cxteraal
functions and variables that the imported file defincs. Including the declarations allows some compile
time crror checking and climinates spurious warnings about undefined functions. The Cload code>
conspires to load the binary or source file when when the file we arc currently compiling gots loaded.
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2 NUMBER THEORY ANE COMBINATORIAL FUNCTIONS 3

2. Number Theory' and Combinatorial Functions

(FACTORIAL N) PS:<GLR.FUNCT>COMBIN.LSP
‘The number of ways to permute N objects.

(CHOOSE N M) | PS:<GLR.FUNCT>COMBIN.LSP
‘The number of ways to place M distinguishable objects on N distinguishable plates.

(BELL-NUMBER N) PS:<GLR.FUNCT>COMBIN.LSP
‘The number of ways to place N distinguishable objccts on N indistinguishable plates.

(CATALAN-NUMBER N) PS: <GLR. FUNCT>COMBIN.LSP
‘The number of ways to fully parenthesize a string of n symbols.

(FIB N) PS:<GLR.FUNCT>FIB.LSP
The Nth (FIXNUM) Fibonacci number. FIB(0)=0, FIB(1)=1, .... Uscs alog(N) algorithm.

(FACTOR N) PS:<GLR.FUNCT>MOD.LSP
Find the prime factors of the integer N (FIXNUM or BIGNUM). Returns a sorteq list of the

factors.

(PRIME-TEST N &optional (TRIALS 60.)) PS: <GLR. FUNCT>MOD. LSP

Tests the primality of N using a probabilistic algorithm (see <Solovay>). Rcturns NIL, PRIME,
or PROBABLY-PRIME (P{crror} = 2" TRIALS) TRIALS must be FIXNUM.

(SMALLER-PRIME N) PS:<GLR.FUNCT>MOD.LSP
Finds the first primc that is smallcr than N. Repcatedly calls PRIME-TEST.

(JACOBI-SYMBOL P Q) PS: <GLR.FUNCT>MOD.LSP
Computes the Jacobi Symbol of P and Q.

(TOTIENT N) PS:<GLR. FUNCT>MOD.LSP
Computes Fuler's totient function of N. Calls FACTOR as a subroutine.

3. Discrete Fourier Transform

‘These functions are used to compute discrete fouricr transforms <Oppenhcimer>. ‘The inputs
arc two FLONUM arrays that represent the real and imaginary parts of the input. The algorithms require
input arrays for the transform to be bit reversed: there are functions for doing the reversal. The functions
also require some initialization. ‘The length of the DEFI" must be a power of 2,
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4 3 DISCRETE FOURIER TRANSI'ORM

Xkl = £ N1 exp(-j2m km/N)
k= (/N E N expl 2w km/N)

(OFT-INIT LOGN) PS:<GLR.FUNCT>DFT.LSP
DET-INIT returns a structure containing some tables that are nceded by the DFT algorithm.

This structure should be saved away and given to the DIFT routine cach time it is called. The structure
need only be computed once for cach size DFT. The length of the DFT is 2l OGN,

(DFT-FORWARD X-REAL X-IMAG TABLES) PS: <GLR. FUNCT>DFT.LSP
‘T'his tunction does a discrete Fourier transform. The results arc written back into X-REAL and

X-IMAG (the previous contents arc lost) and are in sequential order (ic -- not bit reversed). TABLES is
as returncd by DF-INIT.

(DFT-REVERSE X-REAL X-IMAG TABLES) PS:<GLR.FUNCT>DFT.LSP
This is just like IDFT-FORWARD, but it does the inversc transform. The input X arrays should

be in scquential (not bit-reversed) order. The resulting arrays arc also in scquential order.

(DFT-REVERSE-ARRAY ARRAY TABLES ) PS:<GLR.FUNCT>DFT.LSP
‘This bit reverses the first ZI'OGN clements of ARRAY.

(DFT-610 X-REAL X~IMAG TABLES) PS: <GLR.FUNCT>DFT.LSP
‘I'his function docs a forward transform, X-REAL and X-IMAG are bit-reversed input arrays

(to reverse them, use DFF-REVERSE-ARRAY). The results are returncd in X-REAL and X-IMAG in
scquential order.

(DFT-618 X-REAL X-IMAG TABLES) PS: <GLR.FUNCT>DFT.LSP
‘The reverse transform.  Input arrays are scquential order, output arrays arc bit-reversed. Use

DFT-REVERSE-ARRAY to put them in sequential order.

4. Trigonometric and other Functions

‘These approximations come from <Abramowitz>, <CDECY, and <Hastings>.

(EXP10 X) PS: <GLR,FUNCT>EXTFCN.LSP
Computes 10tX.
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R (LOG10 X) : PS:<GLR.FUNCT>EXTFCN.LSP
i Log basc 10 of X.
i
28 (TAN X)
(SEC X)
N (CSC X)
}; (COT X) .
W (ASIN X) ;
S (ACOS X) |
(ASEC X)
7 (ACSC X)
¥ (ACOT Y X) ' PS: <GLR.FUNCT>HYPER.LSP
.- Various trigonometric functions.
(ERROR-FUNCTION X) PS: <GLR.FUNCT>EXTFCN.LSP
A Error function. eps< 1.SE-7.
X @/sart(ar)) S ¥ exp(-t3) dt
>
>
h 3 (BESSEL-I N X) PS: <GLR.FUNCT>BESSEL.LSP
@ Maodificd Bessel function for integer order N. eps € 1.6E-7
‘ (BESSEL-J N X) PS: <GLR.FUNCT>BESSEL.LSP
o Bessel function for integer order N. eps < SE-8.
&
" (GAMMA-FUNCTION A) PS:<GLR. FUNCT>GAMMA, LSP
N Gamma function.
4 (GAMMA-FUNCTION-INCOMPLETE A X) 5: <GLR. FUNCT>GANNA. LSP
{ Incomplete Gamma function. 0<= x <= inf, but breaks if X is large because of roundof¥ crror.
) INa.x)=J ox ta.l et +
+ A
j;: (BETA-FUNCTION A B) PS: <GLR. FUNCT>GAMMA.LSP
\ Reta function. A and B arc FLONUM.
A Ba.b) = fo! @ 1a-9P1dr, 20,050
>
':j : (BETA-FUNCTION-INCOMPLETE A B X) PS:<GLR. FUNCT>GAMMA. LSP
: Incomplicte Beta function, A and B are FLONUM, but onc of A or B must be an integer (cg,
S 3.0).

Ba.b.x) = fo* &1 1981 dt, 0ca, kb, K =x<=1
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P (ELLIPTIC-INTEGRAL-K M) PS:<GLR.FUNCT>ELLIP.LSP
W Fiptic integral of the first kind, k(M). 0<= M < 1. cps = 2.0E-8.
> o™ (1 - msinX @)y 05 a0
IS
Y
; (ELLIPTIC-INTEGRAL-KC M) PS: <GLR.FUNCT>ELLIP.LSP
‘{i} Complementary clliptic integral of the first kind, k'(M). k'(M) = k(1-M).
o
o (ELLIPTIC-INTEGRAL-E M) PS:<GLR.FUNCT>ELLIP.LSP
L7~ Elliptic integral of the second kind, o(M). eps < 2.0E-8. .
1o/ sar(1 - m sin¥(8)) 40
<y
ﬂj (ELLIPTIC-INTEGRAL-EC M) PS:<GLR. FUNCT>ELLIP.LSP
.1: Complementary clliptic intcgral of the second kind, ¢'(M). ¢'(M) = ¢(1-M).
< .
A ‘n .
: (ELLIPTIC-SINE u M) PS: <GLR.FUNCT>ELLIP.LSP
. L:Hiptic sine function (SN(u,M))
)
Yy .
"i (ELLIPTIC-COSINE u M)) PS: <GLR.FUNCT>ELLIP.LSP _
v Elliptic cosinc function (CN(u,M)) i
G
o3 5. Linear Regression
7‘\1
s
Yy Say we arc trying to fit some (x, y) data to a function that looks like:
"‘ Y'(x) = a0* 1 + ail®gi(x) + iz°gz(x) + ... + an®pn(x)
S
“' where the afi] are constants that we are trying to determinc, the gfi] are lincarly independent functions
W that we specify, and Y'(x) is the valuc of the fitted cquation. Such a fit is called a lincar regression and
oY here arc some functions that will do it.
."; (FIT FCTN X Y N &optional (MODE 0)) PS: <GLR.FUNCT>FIT.LSP
l L.ct X be a onc dimensional array of x values (the x values could themsclves be vectors). Y is a
": one dimensional array of FLLONUM valucs for the corresponding X input. N is the number of terms in
: the cquation we are fitting (ic, n in the cquation above). FCTN is a function of N+ 1 arguments that
cvaluates the cquation above, That is FCT'N looks like:
N (LAMBDA (X AO A1 A2 A3 ... AN)
13N +)
i.‘v
and calculates the above equation. FIT returns a kst of the cocfficients Ai as the CDR of its value,
W FIT actually uses the procedure REGRESS in PS:<GI.R.FUNCIDREGRES.ISP, which is @
-\! modcled after <Bevington). 1f you want to do something a littic more complicated, then ask me about
%
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5 LINEAR REGRESSION 7

that procedure.

6. Functional Minimization

(FMFP FUNCT N X G EST EPS LIMIT) PS: <GLR.FUNCT>FMFP.LSP
Fletcher-Powell's  functional minimization procedure (adapted from <Kuester> and

<l.uenberger>). This finds a minimum of a multivariate, unconstrained. nonlincar function. That is, find
the vector X such that F(X) is a local minimum. ‘The arguments to this function are:

N number of independent varisbles
X vector[N] of initial variadble values
contains the result vector on exit
G vector[N] in which to store the gradient
EST estimate of minimum value of objective function
EPS test value representing the expected absolute error in movement

LIMIT maximum number of {fterations

FUNCT user supplied objective function that computes F and the gradient
(FUNCT N X G) returns F(X) and
also fills in the vector[N] G with the gradient

& (MARQUARDT N K X Y Z FUNC DERIV B BMIN BMAX BV)

PS: <GLR.FUNCT>MARQ.LSP

Marquardt’s parameter fitting procedtirc (adapted from <Kuesterd). Given N data points (X[i),

Y[i]) and a function F with K parameters B{j}, find the K paramecters B[j] that best fit the data. The fitted
values are rcturncd in array Z. The arguments are:

N ==~ number of data points (FIXNUM)
K =~ number of unknowns (FIXNUM)
B -~ vector[K] of (FLONUM) unknowns

BMIN -~ vector[K] of (FLONUM) minimum values of B[j)
BMAX -~ vector[K] of (FLONUM) maximum values of B[j]
X -~ vector{N] independent variable data points
(this vector might be a vector of vectors)
Y == vector[N] of (FLONUM) dependent variable
1 ~~ vector[N] of (FLONUM) computed values of dependent variable
BV  -- vector[K] of (FLONUM) codes
1.0 > numerical derivatives
0.0 -> do not change this unknown
FUNC -~ (FUNC X K B N Z ZOFF) computes the function F (using the
K parameters in vector B) for each of the X[0] ... X[N-1)
and puts the respective results into Z[ZOFF+0] ... Z[20FF+N-1)
DERIV-- (not used)
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8 7 HYPERRBOLIC & INVERSE HYPERBOLIC FUNCTIONS

7. llypcrbolic'& Inverse 1lyperbolic Functions

‘This functions usc the Common Lisp <Stecic> names, but arc only defined for real arguments.
‘They call EXP to compute their results.

(COSH X)
(SINH X)
(TANH X)
(COTH X)

(SECH X)
(CSCH X) PS:<GLR.FUNCT>HYPER.LSP

Hyperbolic functions. FLONUM argument and FLONUM result.

(ACOSH X)
(ASINH X)
(ATANH X)
(ACOTH X)

(ASECH X)
(ACSCH X) PS: <GLR.FUNCT>HYP=R.LSP

Inverse hyperbolic functions. FLONUM argument and FLONUM result.

8. Numerical Integration i

(INTEGRATE-TRAPEZOIDAL F X0 X1 N) PS: <GLR.FUNCT>INTEGR.LSP
Uses the trapezoidal rule to integrate the function F (of one FLONUM argument) from X0 to

X1 with N (FIXNUM) itcrations.

(INTEGRATE-SIMPSON F X0 X1 N) PS:<GLR.FUNCT>INTEGR.LSP
Uscs Simpson’s rule to integrate the function F (of one FLONUM argument) from X0 to X1

with N (FIXNUM) iterations.

(INTEGRATE-EULER F X0 Y0 H X1) PS: <GLR. FUNCT>RUNGE .LSP
Uses the forward Fuler method to integrate F(x, y) from position (X0, Y0) to a position (X1, Y1)

using a step size of H. Y1 is the value of INTEGRATE-EULER. F is a function of X and Y (FLONUM)
and should return DY/DX for the given position.

(INTEGRATE-RUNGE-KUTTA F X0 YO H X1) PS: <GLR. FUNCT>RUNGE .LSP
‘This is just like EULER except it uscs a fourth order RUNGE-KUTTA method instcad of

Euler's method.
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8 NUMERICAL INTEGRATION 9

(INTEGRATE-MULTI-STEP-H F X0 YO H X1
&optional (CD 1.0E-8) (CH 1.0E-5)) PS:<GLR.FUNCT>RUNGE .LSP
Uses a multi-step predictor-corrector method to integrate DERIV (sec <Hamming> page 407).

Intcgrates from X0 to X1 using an initial step size of H.  When the routine estimates that the crror is
below CD, the step size is doubled; when the crror is above CH, the step size is halved. For
reasonableness, C1) << CH.

9. Root Finding Functions

(BISECTION-ROOT-SEARCH F X0 X1) PS: <GLR.FUNCT>ROOT.LSP
Uses bisection scarch to find a zero of F(X) between X0 and X1.

(FALSE-POSITION-SEARCH F X0 X1 EPS) PS: <GLR.FUNCT>ROOT.LSP
Uses false position scarch to find a zero of F(X) with initial guesses X0 and X1.

(FALSE-POSITION-CONVERGE F X0 X1 EPS) PS:<GLR.FUNCT>ROOT.LSP
Uscs falsc position convergence to find an X =F(X) with initial guesses X0 and X1.

(CONVERGE F X0 EPS) PS: <GLR. FUNCT>ROOT . LSP
Find an X =F(X) with initial guess of X0. Uses Wegstcin's method.

10. Probability and Statistics

The following functions arc uscful in probability and statistics. There are functions for
computing probability density functions p(x), computing cumulative distributions P(x), and gencrating
random numbers from a particular distribution. Most of the approximations come from <Abramowitz.
Most of the generators use the ratio of unitorm deviates method <Kindcrman).

(UNIFORM-DENSITY X)
(UNIFORM-CUMULATIVE X)
(UNIFORM-RANDOM-NUMBER) PS:<GLR.FUNCT>STATIS.LSP
Probability functions for the uniform distribution.
px)=1 0<=x<=1

(NORMAL-DENSITY X)
(NORMAL-CUMULATIVE X) PS: <GLR.FUNCT>STATIS.LSP

Probability functions for normal (Gaussian) distribution,
pix) = (1/sqrt(2 7)) cxp (-x2/2)
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(NORMAL-TAIL ALPHA) PS:<GLR.FUNCT>STATIS.LSP
Given a probability ALPHA, find the X such that ALPHA=1-P(X), where P(X) is the

cumulative distribution. This function provides a onc-sided tail.

(NORMAL -RANDOM-NUMBER) PS:<GLR.FUNCT>STATIS.LSP

Generates a random number from the unit normal distribution.

(EXPONENTIAL-DENSITY X LAMBDA)

(EXPONENTIAL-CUMULATIVE X LAMBDA)

(EXPONENTIAL-RANDOM-NUMBER LAMBDA) PS:<GLR.FUNCT>STATIS.LSP
Exponcential probability functions.

p(x.A) = Aexp(-Ax), A>0

(POISSON-DENSITY N TIME)

(POISSON-CUMULATIVE N TIME)

(POISSON-RANDOM-NUMBER TIME) PS:<GLR.FUNCT>STATIS.LSP
Poisson probability functions. Probability of exactly N (FIXNUM) arrivals within TIME

(IF1LONUM) for a Poisson process with an average arrival rate (A) of 1.

p(n, m) = (m" exp(-m))/nl, m=At

(CHI-SQUARE-DENSITY X N)

(CHI-SQUARE-CUMULATIVE X N)

(CHI-SQUARE-RANDOM-NUMBER N) PS:<GLR.FUNCT>STATIS.LSP
‘The CHI-SQUARE distribution with N (FIXNUM) degrecs of freedom.

(T-DF3ITY X N)

(T-CUMULATIVE X N) ‘

(T-RANDOM-NUMBER N) PS:<GLR.FUNCT>STATIS.LSP
Student’'s ‘I' distribution with N (FIXNUM) degrees of freedom. N must be even in

T-CUMULATIVE.

(T-TWO-SIDED X N) PS: <GLR.FUNCT>STATIS.LSP
For the I distribution, the probability that T falls within -X to +X. N must be an even

FIXNUM.

(F-DENSITY X M N)

(F-CUMULATIVE X M N)

( F-RANDOM-NUMBER M N) PS: <GLR.FUNCT>STATIS.LSP
Sncdecor’s F distribution with M and N (FIXNUM) degrees of freedom.
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\:x-:'.‘
\ (GAMMA-DENSITY X A)
:} (GAMMA-CUMULATIVE X A)
N (GAMMA-RANDOM-NUMBER A) PS:<GLR.FUNCT>STATIS.LSP
:1 Gamma probability functions with parameter A (FLLONUM). ‘The random numbcr generator
\ must have A > 1.0

p(x,a) = (I/T@)x®*1eX, 0

e 4
P

ot ¢
s,

(BETA-DENSITY X A B)
(BETA-CUMULATIVE X A B)
(BETA-RANDOM-NUMBER A B) PS.<GLR.FUNCT>STATIS.LSP
Beta probability functions with parameters A and B (FLONUM). The random numbcer
gencrator is slow, so keep A and B small (say below 10).
p(x, a.b) = (1/B(ab)) x* 1 1-x)PL, 250, 6>0

.y 4

2
&
(CAUCHY-DENSITY X)
& (CAUCHY-CUMULATIVE X)
, (CAUCHY-RANDOM-NUMBER) PS: <GLR.FUNCT>STATIS.LSP
:: Probability functions for the Cauchy distribution.
o 5 p(x) = 1/ (ar (1 + x2)
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